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Abstract

Surveillance data from an oncology hospital unit on Vancomycin-resistant En-
terococcus (VRE), one of the most prevalent and dangerous pathogens involved in
hospital infections, is used to motivate possibilities of modeling nosocomial infec-
tion dynamics. This is done in the context of hospital monitoring and isolation
procedures as a prelude to the evaluation and improved design of control measures.
A discrete event delay differential equation model in conjunction with statistical
computational methods is formulated to estimate key population-level nosocomial
transmission parameters and isolation procedures. This framework is used to test
the surveillance data’s usefulness in model validation. In the process of model cal-
ibration we discovered significant irregularities in the available surveillance data;
these irregularities are most likely the result of the data observational recording-
process as well as those in the isolation procedures. Efforts to fit data within our
highly flexible dynamic-modeling framework suggest that clinical-trial level surveil-
lance data is needed if one is to successfully develop quantitative models for disease
transmission and intervention. It is concluded that typical “cold” data sets typ-
ically encountered in biological/sociological quantitative modeling efforts may be
inadequate for support of serious model development.
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1 Introduction

One of the more difficult endeavors in inverse problems is the development and eval-
uation (validation) of mathematical and statistical models with so-called “cold data”.
This data, often routinely available in sociological and biological investigations, which
are quantitative observations (often mixed with anecdotal information), are typically
collected with no formal quantitative modeling anticipated. Rather, the collectors have
in mind some vague idea of recording their observations in hope that this data will some-
how be useful in understanding (often at the dynamical or longitudinal level) the process
(biological, physical, sociological, etc.) of interest to them. An important contribution
that inverse problem investigators can make is to understand when a data set is or is
not suitable for model validation. Numerous quantitative modeling tools (mathematical
and statistical) are available to aid in this effort; a brief review of some of these can be
found in [9, 11, 12, 13]-see also [16]. In this paper we present a detailed example of a
modeling attempt based on “data” from an isolation process at hospitals in the US. In
[31] we used hospital based Vancomycin-resistant Enterococcus (VRE) disease data to
motivate development of the most “natural” dynamics model. This entailed a stochas-
tic Markov process model for transition between compartments consisting of healthy
(uncolonized), unhealthy (colonized) patients in the hospital population and colonized
patients in isolation. The use of data with such small population stochastic models in
parameter estimation efforts is difficult. In [31] we presented a methodology for using
the corresponding limit (in large population) mean (sample path averages) population
dynamic model containing the transition parameters to estimate the transition proba-
bilities in the stochastic models. The emphasis in [31] was on methodology and little
attention was given to efforts to further develop the models to obtain good fit to the
experimental data. Here we focus on careful efforts to develop longitudinal models to
describe the data as understood by hospital workers. In particular we develop models
in attempts to include precise events as described in the data and reported by hospital
workers in the data acquisition process. In these efforts we attempt to model the disease
progression (the mathematical model) along with the data collection procedures (the sta-
tistical model) as faithfully as possible in an effort to decide if the “cold data” is useful
in modeling attempts or is use of the data with precisely formulated mathematical and
statistical models somehow fraught with fundamental difficulties, i.e., is it an “ill-posed
problem” in and of itself? For example is the data collection itself flawed, resulting in
such large variability that it is essentially unsuited for such modeling? If so, one should
use experimental optimal design criteria and methodology [3, 11, 12, 17, 25, 26] to design
specific experiments (i.e., data collection protocols) in support of the modeling process.
Successful examples of such endeavors are given in [15, Chapter V, Sec. 6, 7] and more
recently in [10].

We begin with the ordinary differential equation system for sample path averages
suggested by the stochastic model of [31] and modify the model to include jump dis-
continuities and time delays (both scheduled) that are reported in detailed accounting
of the hospital and data acquisition procedures. We then show how to reformulate the
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corresponding delay system as an abstract evolution system in a hereditary space so that
standard finite element type approximations are applicable. We then use known math-
ematical and statistical methodology for inverse problems to investigate the resulting
problem in the context of the available data. We first give a summary of the pertinent
facts underlying VRE infections and transmission in hospital settings.

2 VRE Background

Nosocomial, or hospital-acquired infections, the fourth cause of death [1] in the US, are
evidence that hospitals provide not only medical care but also harbor pathogens that
pose serious, often fatal, risks of infection, particularly to the young, the elderly, and
immune-compromised individuals. Infection-control measures aimed at reducing their
impact are being implemented with various degrees of efficiency at US hospitals.

Hospitals and health care professionals are committed to improve the health of their
patients. However, there are risks associated with the provision of health care with one
of the most important being the acquisition of infections at hospitals. The Centers for
Disease Control and Prevention (CDC) estimates that 5% to 10% of patients, or more
than two million patients each year will get an infection while in a United States hospital
with about 90, 000 of them dying from such infections [21]. These hospitals-acquired
infections or nosocomial infections are infections not present or incubating in a patient
at the time of admission to a hospital or health care facility. Three decades ago infection-
control measures were put in place to control antibiotic-resistant nosocomial infections
and yet these infections have continued to increase. Multidrug-resistant pathogens have
become increasingly problematic, especially in the critical care setting.

Most of the nosocomial infections are primarily caused by antibiotic resistant pathogens,
such as Vancomycin-resistant Enterococcus (VRE). VRE is the group of bacterial species
[18] of the genus enterococcus that is resistant to the antibiotic vancomycin and it can
be found in the digestive/gastrointestinal, urinary-tracts, surgical-incision, and blood-
stream sites.

The duration of colonization could last from weeks to months [20]. The factors
most associated in predisposing VRE colonization to patients includes: a compromised
immune system or nutritional status, the use of catheters (such as urinary or central
venous), co-morbidities (e.g., diabetes, renal insufficiency, cancer), length of stay in the
hospital, inadequate infection control practice among health care workers (HCW), and
prolonged antibiotic used (> 10 days). Hence VRE patients admitted in hospital units
such as intensive care and oncology have a greater colonization risk.

Transmission of VRE can occur through contact with colonized or infected individ-
uals (although, there are cases in which VRE acquisition may arise from the patient’s
own gut flora). The most frequent form of transmission is by contact, categorized as
direct-contact transmission or indirect-contact transmission. Direct-contact transmis-
sion involves direct physical contact (mostly hands) between a susceptible host and a
colonized agent. Indirect-contact transmission involves contact between a susceptible
host and a contaminated institutional environment, that includes health care workers
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(human vectors).
The CDC Hospital Infection Control Program [22] encourages hospitals to develop

their own institution-specific interventions plans that should stress: prudent vancomycin
use by clinicians, hospital staff education regarding vancomycin resistance, early detec-
tion and prompt reporting of vancomycin resistance in enterococci by the hospital mi-
crobiology laboratory, and immediate implementation of appropriate infection control
measures (such as isolation) to prevent person-to-person VRE transmission. Isolation
procedures consist mostly of frequent hand washing which is considered the single most
important control measure.

Deterministic and stochastic models have made substantial contributions to our un-
derstanding of the epidemiological dynamic of infections [2, 19, 27]. Hence, they have
been valuable tools to predict and explain the epidemiology of nosocomial infections.
Many of the models developed to describe the transmission of nosocomial infection in a
health care setting have been based on the Ross-Macdonald model [32] where the trans-
mission of pathogens in health care settings considers health care workers as vectors and
patients as hosts [4, 23, 29, 30, 34]. These models have been used in attempts to explain
the spread of infections, specifically by investigations of the impact of infection control
measures such as patient isolation, hand-washing, and bacterial-control among others.

In this paper we discuss mathematical models for the transmission of VRE in a hos-
pital unit. The development of these models is based on the epidemiological knowledge
of VRE in a setting that allows for the implementation of infection control measures in
hospitals. We focus on the connection of these models with unpublished VRE surveil-
lance data from an oncology unit in order to estimate some of the parameters that govern
the underlying transmission infection dynamics. The usefulness of our new flexible mod-
eling framework for the transmission dynamics of nosocomial infections like VRE was
first evaluated using synthetic noisy data and then tested against the available data.
Our conclusions for this particular data set are then detailed.

3 Surveillance data

The motivating surveillance data is from an oncology unit, obtained from the VRE In-
fection Control database of the Department of Quality Improvement Support Service
of Yale-New Haven Hospital. Data reports on the number of VRE cases occurred on
admission (including patients transferred), the patients’ length of stay, the daily number
of patients in isolation due to VRE colonization, the compliance of swab culture admin-
istered on admission, and the health care worker contacts precautions compliance. Data
collection occurred during the period of January 2005 to January 2007 with a mean
number of 31 in-patients per day (with a total of 37 beds).

Ward protocol required rectal swabbing of all patients on admission, and once a week
thereafter (every Tuesday) for VRE surveillance. Compliance was not 100%, as the mean
percentage of swab cultures taken on admitted patients per day was 77%. Swab-test
results usually were returned 48 hours after admission. If a patient tested VRE positive,
he/she was isolated. The isolation procedure consisted of contact precautions by the
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use of gowns, gloves, and the location of a patient to a single room or to a room with
another patient who was also VRE positive. If a readmission patient had a positive
VRE culture in the past, he/she did not receive the rectal swab on admission and was
isolated immediately. The isolation report was performed on weekdays (no weekends
or holidays). The mean number of isolated VRE colonized patients per day was 9.39
(std=2.90) patients.

4 VRE epidemic model

We consider a deterministic continuous time compartmental model in which patients in a
hospital unit are classified as either uncolonized 𝑈(𝑡), VRE colonized through admission
𝐶1(𝑡), VRE colonized during hospital stay 𝐶2(𝑡), and VRE colonized patients in isolation
𝐽(𝑡), as depicted in the compartmental schematic of Figure 1. (A related Markov Chain
stochastic model is presented in [31]).

We assume homogenous mixing, that is, each patient is considered equally likely
to be in contact with a health care worker in any time interval, equally likely to be
VRE colonized, and, if VRE colonized at a given time, equally likely to transmit the
pathogen at a given time. Patients are admitted to the hospital unit at a rate Λ per
day and some fraction m are already VRE colonized. Therefore, VRE colonized patients
through admission (𝐶1) enter the hospital at a rate 𝑚Λ and uncolonized patients enter
the hospital at a rate (1−m)Λ. VRE colonized patients (𝐶1, 𝐶2, and 𝐽) are discharged at
a different rate from uncolonized patients. Uncolonized patients become VRE colonized
at a rate proportional to the prevalence of patients carrying the bacteria. It is assumed
that an average patient in the population makes 𝛽𝑁 effective contacts (i.e., contact
sufficient to lead to VRE colonization) with other patients per unit time through health
care workers, where 𝑁 is the total population size. Since the probability is 𝑈/𝑁 that a
random contact by a VRE colonized patient is with an uncolonized patient, the number
of new colonization in unit time per infective is (𝛽𝑁)(𝑈/𝑁). This yields a rate of new
VRE colonization (𝛽𝑁)(𝑈/𝑁) [𝐶1+𝐶2+(1−𝛾)𝐽 ] = 𝛽𝑈 [𝐶1+𝐶2+(1−𝛾)𝐽 ]. The hand-
hygiene policy applied to health care workers on VRE colonized patients in isolation
reduces infectivity by a factor of 𝛾 (0 < 𝛾 < 1). This assumption means that isolated
VRE colonized patients make fewer contacts than regular patients, so transmission of
the bacteria by these isolated members has an infectivity factor (1 − 𝛾). It is assumed
VRE colonization periods last from weeks to months. In addition, because spontaneous
decolonization occurs infrequently, clearance of the bacteria is not considered in the
model. VRE colonized patients are not treated for VRE and all patients on admission are
swab tested for VRE. A waiting time of two days for the results of the swab-test cultures
is assumed for all patients in any time period. After results are returned, VRE colonized
patients are moved into isolation (see the next section for the derivation of isolation
rates). As a simplification, we assume that the total number of patients remains fixed
(i.e., overall admission rate equals overall discharge rate, Λ = 𝜇1𝑈 + 𝜇2(𝐶1 + 𝐶2 + 𝐽)),
and VRE colonization confers no additional mortality. Finally, the total population of
patients can be written as 𝑁 = 𝑈 + 𝐶1 + 𝐶2 + 𝐽 .
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Figure 1: VRE compartmental model

A description of the variables and parameters used in our model are given in Table
1, and the model equations (which are derived in the next section) are the given by

𝑑𝐶1(𝑡)

𝑑𝑡
= 𝑚{𝜇1𝑁 + (𝜇2 − 𝜇1)[𝐶1(𝑡) + 𝐶2(𝑡) + 𝐽(𝑡)]}
− 𝑚𝑒−2𝜇2{𝜇1𝑁 + (𝜇2 − 𝜇1)[𝐶1(𝑡− 2) + 𝐶2(𝑡− 2) + 𝐽(𝑡− 2)]}
− 𝜇2𝐶1(𝑡)

𝑑𝐶2(𝑡)

𝑑𝑡
= 𝛽{𝑁 − [𝐶1(𝑡) + 𝐶2(𝑡) + 𝐽(𝑡)]}[𝐶1(𝑡) + 𝐶2(𝑡) + (1− 𝛾)𝐽(𝑡)]
− 𝜇2𝐶2(𝑡), for 𝑡𝑖 < 𝑡 ≤ 𝑡𝑖+1

𝐶2(𝑡
+
𝑖+1) = 𝐶2(𝑡

−
𝑖+1)− 𝐶2(𝑡𝑖+1 − 2)𝑒−2𝜇2

𝑑𝐽(𝑡)

𝑑𝑡
= 𝑚𝑒−2𝜇2{𝜇1𝑁 + (𝜇2 − 𝜇1)[𝐶1(𝑡− 2) + 𝐶2(𝑡− 2) + 𝐽(𝑡− 2)]}
− 𝜇2𝐽(𝑡), for 𝑡𝑖 < 𝑡 ≤ 𝑡𝑖+1

𝐽(𝑡+𝑖+1) = 𝐽(𝑡−𝑖+1) + 𝐶2(𝑡𝑖+1 − 2)𝑒−2𝜇2 (1)

with initial conditions: 𝐶1(0) = 𝐶01, 𝐶2(0) = 𝐶02, 𝐽(0) = 𝐽0, and a trajectory of the
solution in the past: 𝐶1(𝜃) = Γ(𝜃), 𝐶2(𝜃) = Ψ(𝜃), 𝐽(𝜃) = Ω(𝜃) for 𝜃 ∈ [−2, 0).
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Table 1: Description and units for model parameters and varaibles

Variables Description Units

𝑈(t) Number of uncolonized patients Individuals

𝐶1(t) Number of VRE colonized patients Individuals
through admission

𝐶2(t) Number of VRE colonized patients Individuals
during hospital stay

𝐽(t) Number of VRE colonized patients Individuals
in isolation

Parameters Description Units

Λ Patients admission rate Individuals/day

𝑚 VRE colonized patients on admission rate Dimensionless

𝛽 Effective contact rate 1/day

𝛾 HCW hand hygiene compliance rate Dimensionless

𝜇1 Uncolonized patients discharged rate 1/day

𝜇2 VRE colonized patients discharged rate 1/day

4.1 Brief derivation of the model

The rate of change in the total population of 𝐶1’s can be modeled by considering the
rate of admission to this compartment minus the rate at which 𝐶1’s are isolated and
minus the rate at which 𝐶1’s are discharged before isolation. It is assumed that swab
cultures are administered to every patient that is admitted (100% swab compliance) and
that it takes two days for the test results to be returned. Therefore, two days after a
colonized patient has been admitted, he/she will be isolated if he/she is not discharged
over the waiting period of two days. Thus, the isolation rate of VRE colonized patients
tested on admission depends on the past history of these patients. Since 𝑚Λ(𝑡) is the
admission rate of VRE colonized patients, then 𝑚Λ(𝑡− 2) is the rate at which the 𝐶1’s
were admitted at time 𝑡− 2. Some of those admitted at time 𝑡− 2 may be discharged at
a rate 𝜇2 before being isolated over the period of two days. Thus, we need to find the
fraction of those admitted at time 𝑡− 2 that are still admitted two days after.

We consider the “cohort” of patients who were all admitted at 𝑡 = 0, denoted by
𝐶1(0). Let 𝐶1(2) denote the number of these who are still in 𝐶1 class 2 days later. If
patients leave 𝐶1 class at the rate 𝜇2 per day, then

𝑑𝐶1(𝑡)

𝑑𝑡
= −𝜇2𝐶1(𝑡) (2)
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with initial condition 𝐶1(0) = 𝐶01. Hence

𝐶1(2)

𝐶1(0)
= 𝑒−2𝜇2 (3)

denotes the fraction of individuals who were admitted at time 𝑡 = 0 and who are still
admitted at time 𝑡 = 2. Thus, the rate of isolation of 𝐶1’s at time 𝑡 by factoring in
discharges over the period of two days is 𝑚Λ(𝑡 − 2)𝑒−2𝜇2 . Then, the dynamics of 𝐶1’s
at time 𝑡 is given by

𝑑𝐶1(𝑡)

𝑑𝑡
= 𝑚Λ(𝑡)−𝑚Λ(𝑡− 2)𝑒−2𝜇2 − 𝜇2𝐶1(𝑡) (4)

with initial condition 𝐶1(0) = 𝐶01. Consequently, the rate of change of isolated VRE
colonized patients at time 𝑡 can be modeled as

𝑑𝐽(𝑡)

𝑑𝑡
= 𝑚Λ(𝑡− 2)𝑒−2𝜇2 − 𝜇2𝐽(𝑡) (5)

which is the rate of 𝐶1’s entering to 𝐽 class minus the discharge rate in unit time and
with initial condition 𝐽(0) = 𝐽0.

The rate of change in the total population of 𝐶2’s can be modeled by considering
the rate of new colonizations during hospital stay minus the rate at which 𝐶2’s are
isolated and minus the rate at which 𝐶2’s are discharged before isolation. Weekly swab
cultures were administered every Tuesday. Assuming that every patient is tested (100%
compliance) with two days for the test results to be returned (sometime before health
care worker’s night shift), we can assume that VRE colonized patients in 𝐶2 class will
be moved into isolation every Thursday night. Hence, there is not a delay involved here
but rather a jump discontinuity every Thursday.

We let 𝑡𝑖 be a Thursday and 𝑡𝑖+1 be the next Thursday. We can then expect a jump
discontinuity in the number of patients in 𝐶2 class as well as in the number of patients in
𝐽 class at time 𝑡𝑖+1. If 𝐶2(𝑡

+
𝑖+1) represents the number of patients in 𝐶2 after isolation,

then

𝐶2(𝑡
+
𝑖+1) = 𝐶2(𝑡

−
𝑖+1)− 𝐶2(𝑡𝑖+1 − 2)𝑒−2𝜇2 . (6)

Here 𝐶2(𝑡𝑖+1 − 2) represents the number of patients in 𝐶2 class that were tested on
Tuesday and 𝑒−2𝜇2 is the fraction of those 𝐶2(𝑡𝑖+1−2) that were not discharged over the
period of two days before isolation (it follows from the same derivations as represented
in (3)). This jump discontinuity in 𝐶2 influences a jump in 𝐽 defined as

𝐽(𝑡+𝑖+1)− 𝐽(𝑡−𝑖+1) = 𝐶2(𝑡𝑖+1 − 2)𝑒−2𝜇2 . (7)

The number of isolated patients after isolation, 𝐽(𝑡+𝑖+1), can be determined by the number
of patients in 𝐽 class before isolation plus the number of patients in 𝐶2 class that were
isolated at time 𝑡𝑖+1. Therefore, the dynamics for compartment 𝐶2 and 𝐽 at time 𝑡 for
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𝑡𝑖 < 𝑡 ≤ 𝑡𝑖+1 are given by

𝑑𝐶2(𝑡)

𝑑𝑡
= 𝛽𝑈(𝑡) [𝐶1(𝑡) + 𝐶2(𝑡) + (1− 𝛾)𝐽(𝑡)] − 𝜇2𝐶2(𝑡) (8)

𝑑𝐽(𝑡)

𝑑𝑡
= 𝑚Λ(𝑡− 2)𝑒−2𝜇2 − 𝜇2𝐽(𝑡), (9)

with initial condition 𝐶2(0) = 𝐶02, 𝐽(0) = 𝐽0. The rate of change for 𝐶2 class is modeled
by the rate of new colonizations minus the rate of discharged in unit time. The rate of
change of 𝐽 class is modeled by the rate of 𝐶1’s entering 𝐽 minus the discharge rate in
unit time.

Finally, we assume the overall admission rate equal to the overall discharge rate, i.e.,
Λ(𝑡) = 𝜇1𝑈(𝑡) + 𝜇2[𝐶1(𝑡) +𝐶2(𝑡) + 𝐽(𝑡)]. In order to keep the overall rate of admission
equal to the overall rate of discharge, we replace 𝑈(𝑡) = 𝑁 − [𝐶1(𝑡) + 𝐶2(𝑡) + 𝐽(𝑡)]
obtaining the system of equations given in (1).

4.2 Parameters estimated directly form the surveillance data

Infection control measures were implemented in the form of health care worker hand-
hygiene before and after patients contact by the use of gloves and gowns, and washing
of hands. For this study we consider the health care worker before patient contact
compliance of 57.56% as a better estimator for the parameter 𝛾. In the oncology unit
VRE colonized patients had a mean length of stay of 13.15 days (std=18.28) compared
with 6.27 (std=6.80) for the uncolonized patients. These means are statistically signif-
icantly different (p-value < 0.0001), supporting the assumption of different discharge
rates. Hence, we take 1/𝜇1 = 6.27 and 1/𝜇2 = 13.15 giving 𝜇1 = 0.16 and 𝜇2 = 0.08.

In an attempt to estimate the fraction 𝑚 of patients that are colonized on admission,
we found inconsistencies in the reported prevalence of VRE on admission (the summaries
of admitted patients did not match the actual data). In estimating the initial conditions
(𝐶01, 𝐶02, 𝐽0) from the data reported on the first day of data collection (January 3, 2005),
only the number of VRE colonized patients in isolation is reported. Hence, the initial
conditions for 𝐶1 and 𝐶2 classes cannot be easily estimated. Another parameter that is
of interest and can not be estimated directly from the data is the VRE transmission rate
𝛽. As a result, the fraction of patients that are colonized on admission and the trans-
mission rate are estimated using inverse problem methodology. In Table 2 we present
the estimated and assumed values of the parameters and initial conditions required for
inverse problem calculations.

5 Numerical implementation

The solutions to the system (1) can be simulated using an algorithm developed by
Banks and Kappel [14] and extended for nonlinear systems [5, 6, 28] (see also [7, 8] for
applications of this algorithm). The idea behind the algorithm is to first represent the
system as an infinite dimensional abstract evolution equation (AEE) and then consider

9



Table 2: Parameters and initial conditions values (values assumed are used for optimiza-
tion purposes)

Initial Conditions Oncology Unit (N=37) Units Source

[𝐶01, 𝐶02, 𝐽0] [1,2,3] Individuals [assumed,assumed,data]
Γ(𝜃) [0,1] Individuals assumed
Ψ(𝜃) [2,2] Individuals assumed
Ω(𝜃) [4,4] Individuals data

Parameters

Λ 𝜇1𝑈(t) + 𝜇2(𝐶(t) + 𝐽(t)) Individuals/day -
𝑚 0.04 Dimensionless Assumed
𝛽 0.001 1/day Assumed
𝛾 0.58 Dimensionless data
𝛼 0.29 1/day data
𝜇1 0.16 1/day data
𝜇2 0.08 1/day data

approximations in a space spanned by piecewise linear splines. An approximation to
the solution of system (1) is obtained by calculating numerically the generalized time
dependent Fourier coefficients of the approximate solutions corresponding to the spline
representation. With these coefficients we can recover an approximation to the solution
of the system. This approach provides a rigorous framework in which global existence and
uniqueness of the solution along with convergence proofs can be given (see [5, 6, 8, 14, 28]
for proofs).

5.1 Abstract evolution equation formulation

We use the notation of [8, 14]. Let 𝑥(𝑡) represent the state of the system (1) at time 𝑡,
that is

𝑥(𝑡) = (𝐶1(𝑡), 𝐶2(𝑡), 𝐽(𝑡))
𝑇 ,

and represent the function space state of the system due to the delay as

𝑥𝑡(𝜏) = 𝑥(𝑡+ 𝜏), −2 ≤ 𝜏 ≤ 0.

We define 𝑍 ≡ ℝ
3 × 𝐿2(−2, 0;ℝ3) as the infinite dimensional Hilbert space with norm

∣(𝜂, 𝜙)∣𝑍 =

(
∣𝜂∣2 +

∫ 0

−2
∣𝜙(𝜏)∣2𝑑𝜏

)1/2

,
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where (𝜂, 𝜙) ∈ 𝑍 and 𝐿2 is the space of square integrable functions, and inner product

⟨(𝜂, 𝜙), (𝜁, 𝜓)⟩𝑍 = 𝜂𝑇 𝜁 +

∫ 0

−2
𝜙(𝜏)𝑇𝜓(𝜏)𝑑𝜏

for (𝜂, 𝜙), (𝜁, 𝜓) ∈ 𝑍.
Then the system (1) can be written as

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐿(𝑥(𝑡), 𝑥𝑡) + 𝑓(𝑥(𝑡)) + 𝑔 for 𝑡𝑖 < 𝑡 ≤ 𝑡𝑖+1,

(𝑥(0), 𝑥0) = (Φ(0),Φ) ∈ 𝑍, (10)

where 𝑡 > 0 and Φ ∈ 𝒞(−2, 0;ℝ3) is the trajectory history function of the system defined
on [−2, 0].

In the model (10), 𝑔 is the state independent part of the system, 𝐿(𝑥(𝑡), 𝑥𝑡) is the
linear part of the system, and 𝑓(𝑥(𝑡)) is the nonlinear part of the system. If we let 𝛿−2(𝜏)
be the Dirac delta ‘density’ (corresponding to a Heaviside distribution with a unit jump
at 𝜏 = −2), we have

𝑔 =

⎡
⎣ 𝑚𝑁𝜇1(1− 𝑒

−2𝜇2)
0

𝑚𝑁𝜇1𝑒
−2𝜇2

⎤
⎦

𝐿(𝜂, 𝜙) =

⎡
⎣ 𝑚(𝜇2 − 𝜇1)− 𝜇2 𝑚(𝜇2 − 𝜇1) 𝑚(𝜇2 − 𝜇1)

𝛽𝑁 𝛽𝑁 − 𝜇2 𝛽𝑁(1− 𝛾)
0 0 −𝜇2

⎤
⎦ 𝜂

+𝑚𝑒−2𝜇2(𝜇2 − 𝜇1)
⎡
⎣ −1 −1 −1

0 0 0
1 1 1

⎤
⎦∫ 0

−2
𝜙(𝜏)𝛿−2(𝜏)𝑑𝜏

𝑓(𝜂) =

⎡
⎣ 0 0 0

−𝛽[𝜂1 + 2𝜂2 + (2− 𝛾)𝜂3] −𝛽[𝜂2 + (2− 𝛾)𝜂3] −𝛽(1− 𝛾)𝜂3
0 0 0

⎤
⎦ 𝜂.

With respect to the nonlinear terms in 𝑓(𝜂), a more realistic model requires that these
terms be bounded in the limit (i.e., saturation should be considered in the nonlinear
terms so that in the limit it is at least affine in 𝑥1 or 𝑥2 or 𝑥3). For well posedness
considerations the nonlinear terms can be replaced by a function such as:

𝛽𝑖(𝑥𝑖) =

⎧⎨
⎩

0 𝑥𝑖 < 0
𝛽𝑥𝑖 0 ≤ 𝑥𝑖 ≤ 𝑥̄𝑖
𝛽𝑥̄𝑖 𝑥̄𝑖 < 𝑥𝑖

11



with 𝑥𝑖 ∈ ℝ
+ as finite upper bounds and 𝑖 = 1, 2, 3. Then 𝑓(𝜂) can be replaced by

𝑓(𝜂) =

⎡
⎣ 0 0 0

−𝛽1(𝜂1)− 2𝛽2(𝜂2)− (2 − 𝛾)𝛽3(𝜂3) −𝛽2(𝜂2)− (2− 𝛾)𝛽3(𝜂3) −(1− 𝛾)𝛽3(𝜂3)
0 0 0

⎤
⎦ 𝜂,

which yields

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐿(𝑥(𝑡), 𝑥𝑡) + 𝑓(𝑥(𝑡)) + 𝑔 for 𝑡𝑖 < 𝑡 ≤ 𝑡𝑖+1,

(𝑥(0), 𝑥0) = (Φ(0),Φ) ∈ 𝑍. (11)

5.2 Abstract evolution equation implementation

We define a nonlinear operator 𝒜 : 𝒟(𝒜) ⊂ 𝑍 → 𝑍 by

𝒜(𝜙(0), 𝜙) =

(
𝐿(𝜙(0), 𝜙) + 𝑓(𝜙(0)),

𝑑

𝑑𝜏
𝜙

)

with domain defined as

𝒟(𝒜) = {(𝜙(0), 𝜙) ∈ 𝑍∣𝜙 ∈ 𝐻1(−2, 0;ℝ3)}.

where neither the nonlinear operator 𝒜 nor the domain 𝒟(𝒜) depends on 𝑡. If we let
𝑧(𝑡) = (𝑥(𝑡), 𝑥𝑡) ∈ 𝑍, then the delay system (11) can be formulated as

𝑑𝑧(𝑡)

𝑑𝑡
= 𝒜𝑧(𝑡) + (𝑔, 0)

𝑧(0) = 𝑧0. (12)

Define 𝑍𝑀 to be the approximating piecewise linear spline [14, 15] subspace of 𝑍, 𝑃𝑀

as the orthogonal projection of 𝑍 onto 𝑍𝑀 , and 𝒜𝑀 as the approximating operator of 𝒜
given by 𝒜𝑀 = 𝑃𝑀𝒜𝑃𝑀 (again, see [8, 14]). Then the system (12) can be approximated
by the finite dimensional system

𝑑𝑧𝑀 (𝑡)

𝑑𝑡
= 𝒜𝑀𝑧𝑀 (𝑡) + 𝑃𝑀 (𝑔, 0)

𝑧𝑀 (0) = 𝑃𝑀𝑧0. (13)

We define a basis and representation for 𝑍𝑀 . By partitioning the interval [−2, 0]
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with 𝑡𝑀𝑗 = −𝑗(2/𝑀) for 𝑗 = 0, ...,𝑀 , we can define a basis 𝛽𝑀 by

𝛽𝑀 = (𝛽𝑀 (0), 𝛽𝑀 ) where 𝛽𝑀 = (𝑒𝑀0 , 𝑒
𝑀
1 , ..., 𝑒

𝑀
𝑀 )⊗ 𝕀3,

and an element in 𝑍𝑀 can be written as

𝑧𝑀 = 𝛽𝑀𝛼𝑀 =
𝑀∑
𝑗=0

(𝑒𝑀𝑗 (0), 𝑒𝑀𝑗 )𝑎𝑀𝑗 ,

with 𝑎𝑀𝑗 ∈ ℝ
𝑀 and the 𝑒𝑀𝑗 ’s are piecewise linear functions with 𝑒𝑀𝑗 (𝑡𝑀𝑖 ) = 𝛿𝑖𝑗 for

𝑖, 𝑗 = 0, ...,𝑀 .
Define 𝐴𝑀

1 as a matrix representation of 𝒜𝑀 restricted to the subspace 𝑍𝑀 and let
𝑤𝑀 (𝑡) and 𝐾𝑀 be defined such that 𝑧𝑀 (𝑡) = 𝛽𝑀𝑤𝑀 (𝑡) and 𝑃𝑀 (𝑔, 0) = 𝛽𝑀𝐾. Then,
solving for 𝑧𝑀 (𝑡) in the finite dimensional system (13) is equivalent to solving for 𝑤𝑀 (𝑡)
in the system

𝑑𝑤𝑀 (𝑡)

𝑑𝑡
= 𝐴𝑀𝑤𝑀 (𝑡) +𝐾𝑀

𝑤𝑀 (0) = 𝑤𝑀
0 , (14)

where 𝛽𝑀𝑤𝑀
0 = 𝑃𝑀𝑧0. We remark that based on previous theory–see [5, 6, 28], having

obtained 𝑤𝑀 , the product 𝛽𝑀𝑤𝑀 (𝑡) converges uniformly in 𝑡 to the solution of (12).
In order to approximate 𝑃𝑀 (𝜂, 𝜙) for any (𝜂, 𝜙) ∈ 𝑍, where 𝑃𝑀 (𝜂, 𝜙) is the orthog-

onal projection of (𝜂, 𝜙) ∈ 𝑍 onto 𝑍𝑀 , assume 𝑃𝑀 (𝜂, 𝜙) = 𝛽𝑀𝑢𝑀 where 𝑢𝑀 ∈ ℝ
3

then

0 = ⟨𝛽𝑀𝑢𝑀 − (𝜂, 𝜙), 𝛽𝑀 ⟩𝑍
which implies that

⟨𝛽𝑀 , 𝛽𝑀 ⟩𝑢𝑀 = ⟨𝛽𝑀 , (𝜂, 𝜙)⟩𝑍 . (15)

The orthogonal projection 𝑃𝑀 is uniquely determined by solving (15) for 𝑢𝑀 and implies
that

𝐾𝑀 = (⟨𝛽𝑀 , 𝛽𝑀 ⟩𝑍)−1⟨𝛽𝑀 , (𝑔, 0)⟩𝑍
and

𝑤𝑀
0 = (⟨𝛽𝑀 , 𝛽𝑀 ⟩𝑍)−1⟨𝛽𝑀 , (𝑥(0), 𝑥0)⟩𝑍 .

Similarly, in order to approximate 𝐴𝑀𝛼𝑀 for any 𝛼𝑀 ∈ ℝ
3, we observe that

𝒜𝑀𝛽𝑀𝛼𝑀 = 𝑃𝑀 (𝒜𝛽𝑀𝛼𝑀 ) = 𝛽𝑀𝐴𝑀
1 𝛼

𝑀

and

𝑃𝑀 (𝒜𝛽𝑀𝛼𝑀 ) = 𝑃𝑀 (𝐿(𝛽𝑀 (0)𝛼𝑀 , 𝛽𝑀𝛼𝑀 ) + 𝑓(𝛽𝑀 (0)𝛼𝑀 ), 𝑑
𝑑𝜏 (𝛽

𝑀𝛼𝑀 )).

Thus
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0 = 𝛽𝑀𝐴𝑀
1 𝛼

𝑀 − 𝑃𝑀 (𝐿(𝛽𝑀 (0)𝛼𝑀 , 𝛽𝑀𝛼𝑀 ) + 𝑓(𝛽𝑀 (0)𝛼𝑀 ), 𝑑
𝑑𝜏 (𝛽

𝑀𝛼𝑀 ))

and

0 = ⟨𝛽𝑀 , 𝛽𝑀𝐴𝑀
1 𝛼

𝑀 − (𝐿(𝛽𝑀 (0)𝛼𝑀 , 𝛽𝑀𝛼𝑀 ) + 𝑓(𝛽𝑀 (0)𝛼𝑀 ), 𝑑
𝑑𝜏 (𝛽

𝑀𝛼𝑀 ))⟩𝑍 ,
which implies that

⟨𝛽𝑀 , 𝛽𝑀 ⟩𝑍(𝐴𝑀
1 𝛼

𝑀 ) = ⟨𝛽𝑀 , (𝐿(𝛽𝑀 (0)𝛼𝑀 , 𝛽𝑀𝛼𝑀 ) + 𝑓(𝛽𝑀 (0)𝛼𝑀 ),
𝑑

𝑑𝜏
(𝛽𝑀𝛼𝑀 ))⟩𝑍 .

(16)
Therefore, 𝐴𝑀

1 𝛼
𝑀 is uniquely defined by solving (16) and implies that

𝐴𝑀
1 𝑤

𝑀 (𝑡) = (⟨𝛽𝑀 , 𝛽𝑀 ⟩𝑍)−1𝑄𝑀𝑤𝑀 (𝑡)

where

𝑄𝑀 = ⟨𝛽𝑀 (0), 𝐿(𝛽𝑀 (0), 𝛽𝑀 ) + 𝑓(𝛽𝑀 (0))⟩ + ⟨𝛽𝑀 , 𝛽̇𝑀 ⟩.

5.3 Convergence of solutions

Before performing an inverse problem using the discrete event model with delay (1) one
needs to know how many partitions𝑀 to take in the interval [-2, 0] so that the solutions
of (13) are close to the solutions of (12)– we are guaranteed convergence as 𝑀 → ∞.
In order to do this, we carried out simulations for the forward problem for increasing
values of 𝑀 with the parameter values presented in Table 2.

We used Matlab’s 𝑜𝑑𝑒45 to solve system (14) with 𝑀 = 12, 24, 48, 96. In Figure 2 we
present the solutions for each 𝑀 value. Note that solutions corresponding to the 𝑀 =
24, 48, 96 values are very close. However, these results coupled with the computational
times required in solving the system on the time interval 𝑡 = [0, 100] (see Table 3) suggest
that any 𝑀 between 24 and 48 appears to be a reasonable choice for this system. We
remark that the computational time increases by a factor of 12 when we increase the
partitions from𝑀 = 48 to𝑀 = 96. As a result of these investigations, we chose𝑀 = 30
for our continuing considerations.
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Table 3: Computational times required to solve the discrete event model with delay (1)
for increasing number 𝑀 of partitions using oncology unit parameters.

𝑀 (partitions) Time (s)

12 1.99
24 18.17
48 194.44
96 2,402.10
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Figure 2: Solutions of the discrete event model (1) with delay for increasing 𝑀 using
the oncology unit parameters

6 Inverse Problem

6.1 Least squares theory

We next consider a least square formulation of a generic inverse problem for a vector 𝜃
dependent system

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑔(𝑡, 𝑥(𝑡; 𝜃), 𝜃)

𝑥(𝑡0) = 𝑥0, (17)

with parameter vector 𝜃 ∈ ℝ
𝑝, 𝑥(𝑡) = (𝑥1(𝑡), ..., 𝑥𝑁 (𝑡))𝑇 ∈ ℝ

𝑁 , and an observational
process 𝑦(𝑡𝑗) = 𝐶𝑥(𝑡𝑗; 𝜃) ∈ ℝ

𝑚 for 𝑗 = 1, ..., 𝑛, where 𝐶 is an 𝑚 × 𝑁 matrix. The
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mathematical model is assumed to be well-posed (i.e., existence of a unique solution
that depends smoothly on the parameters and initial data).

Let 𝑌𝑗, for 𝑗 = 1, ..., 𝑛, be longitudinal data observations corresponding to the ex-
perimental data of the observational process. Since in general 𝑌𝑗 is not assumed to be
free of error (i.e., error in the data collection process), 𝑌𝑗 will not be 𝑦(𝑡𝑗). We can
thus envision experimental data as generally consisting of observations from a “perfect
model” plus an error component represented by the statistical model

𝑌𝑗 = 𝑓(𝑡𝑗; 𝜃0) + ℰ𝑗 for 𝑗 = 1, .., 𝑛, (18)

where 𝜃0 corresponds to the “true” parameter that would generate error free observations
{𝑌𝑗}. The function 𝑓(𝑡𝑗, 𝜃) corresponds to the observation process for model (17) and
depends on the parameters 𝜃 in a nonlinear fashion.

The ℰ𝑗 ’s are random variables and we make the following standard assumptions on
our statistical model: (i) The measurement errors ℰ𝑗 for 𝑗 = 1, .., 𝑛 have mean zero, i.e.,
𝐸(ℰ𝑗) = 0; (ii) The measurement errors ℰ𝑗 for 𝑗 = 1, .., 𝑛 have the same variance, i.e.,
𝑣𝑎𝑟(ℰ𝑗) = 𝜎20 < ∞, and are independent identically distributed (iid) random variables
for all 𝑡𝑗.

If the error distribution is unknown, an ordinary least squares (OLS) optimization
procedure is often employed [9]. This method yields the estimator

𝜃𝑂𝐿𝑆 = 𝜃𝑛𝑂𝐿𝑆 = arg min𝜃∈Θ
𝑛∑

𝑗=1

∣𝑌𝑗 − 𝑓(𝑡𝑗, 𝜃)∣2. (19)

This corresponds to solving for 𝜃 in

𝑛∑
𝑗=1

[𝑌𝑗 − 𝑓(𝑡𝑗, 𝜃)]∇𝑓(𝑡𝑗, 𝜃) = 0.

It is of interest to know the distribution of 𝜃𝑂𝐿𝑆 and for this we have the asymptotic
theory (for details see [9, 24, 33]) which yields that as 𝑛→ ∞

𝜃𝑂𝐿𝑆 = 𝜃𝑛𝑂𝐿𝑆 ∼ 𝑁𝑝(𝜃0,Σ
𝑛
0 ), (20)

where the covariance matrix Σ𝑛
0 is defined by

Σ𝑛
0 ≡ 𝜎20[𝑛Ω0]

−1

and

Ω0 ≡ lim𝑛→∞
1

𝑛
𝜒𝑛(𝜃0)

𝑇𝜒𝑛(𝜃0).

Here 𝜒𝑛(𝜃) = {𝜒𝑗𝑘} is the sensitivity matrix defined by

𝜒𝑗𝑘(𝜃) =
∂𝑓(𝑡𝑗, 𝜃)

∂𝜃𝑘
𝑗 = 1, ..., 𝑛 and 𝑘 = 1, ..., 𝑝.
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Given 𝜃𝑂𝐿𝑆, the estimate corresponding to a specific realization {𝑦𝑗} of {𝑌𝑗}, the error
variance 𝜎20 is approximated by

𝜎̂2𝑂𝐿𝑆 =
1

𝑛− 𝑝
𝑛∑

𝑗=1

∣𝑌𝑗 − 𝑓(𝑡𝑗, 𝜃𝑂𝐿𝑆)∣2 (21)

which is the bias adjusted estimate for 𝜎20 . The covariance matrix Σ𝑛
0 is approximated

by
Σ̂𝑛
𝑂𝐿𝑆 = 𝜎̂2𝑂𝐿𝑆[𝜒

𝑇 (𝜃𝑂𝐿𝑆)𝜒(𝜃𝑂𝐿𝑆)]
−1. (22)

Therefore as 𝑛→ ∞

𝜃𝑂𝐿𝑆 ∼ 𝒩𝑝(𝜃0,Σ
𝑛
0 ) ≈ 𝒩𝑝(𝜃𝑂𝐿𝑆, Σ̂

𝑛
𝑂𝐿𝑆). (23)

If the error distribution is unknown and the assumption of constant variance of the
error in the longitudinal data does not hold, we need to formulate a new statistical model
to take into consideration the non-constant error variability. In this case a generalized
least square (GLS) optimization procedure may be more appropriate. If we can assume
that the size of the error depends on the size of the observed quantity, the statistical
model (i.e, a relative error model) is given by

𝑌𝑗 = 𝑓(𝑡𝑗, 𝜃0)(1 + ℰ𝑗) for 𝑗 = 1, .., 𝑛, (24)

where under assumptions (i)-(ii) we have 𝑌𝑗 ∼ 𝒩 (𝑓(𝑡𝑗 , 𝜃0), 𝜎
2
0𝑓

2(𝑡𝑗 , 𝜃0)). In this case,
GLS can be viewed as minimizing the distance between the data and the model while
taking into account unequal quality of the observations. The GLS method defines the
estimator 𝜃𝐺𝐿𝑆 as the solution of the normal equations

𝑛∑
𝑗=1

𝑓−2(𝑡𝑗 , 𝜃𝐺𝐿𝑆)[𝑌𝑗 − 𝑓(𝑡𝑗, 𝜃𝐺𝐿𝑆)]∇𝑓(𝑡𝑗 , 𝜃𝐺𝐿𝑆) = 0. (25)

For motivation underlying this definition see [9, 24]. The idea is to assign to each model
dependent observation a weight that reflects the uncertainty in that observation. From
the corresponding asymptotic theory we have as 𝑛→ ∞

𝜃𝐺𝐿𝑆 = 𝜃𝑛𝐺𝐿𝑆 ∼ 𝒩𝑝(𝜃0,Σ
𝑛
0 ) (26)

where
Σ𝑛
0 ≈ 𝜎20 [𝐹 𝑇 (𝜃0)𝑊 (𝜃0)𝐹 (𝜃0)]

−1

with

𝐹 (𝜃) =

⎡
⎢⎢⎣

∂𝑓(𝑡1,𝜃)
∂𝜃1

⋅ ⋅ ⋅ ∂𝑓(𝑡1,𝜃)
∂𝜃𝑝

...
...

∂𝑓(𝑡𝑛,𝜃)
∂𝜃1

⋅ ⋅ ⋅ ∂𝑓(𝑡𝑛,𝜃)
∂𝜃𝑝

⎤
⎥⎥⎦
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and 𝑊−1(𝜃) = 𝑑𝑖𝑎𝑔(𝑓2(𝑡1, 𝜃), ..., (𝑓
2(𝑡𝑛, 𝜃)). For the estimates we have the covariance

matrix approximation (𝜃𝐺𝐿𝑆 is the estimate corresponding to a realization of {𝑌
𝑗})

Σ𝑛
0 ≈ Σ̂𝑛

𝐺𝐿𝑆 = 𝜎̂2𝐺𝐿𝑆 [𝐹
𝑇 (𝜃𝐺𝐿𝑆)𝑊 (𝜃𝐺𝐿𝑆)𝐹 (𝜃𝐺𝐿𝑆)]

−1, (27)

and the error variance approximation

𝜎̂2𝐺𝐿𝑆 =
1

𝑛− 𝑝
𝑛∑

𝑗=1

1

𝑓2(𝑡𝑗 , 𝜃𝐺𝐿𝑆)
∣𝑌𝑗 − 𝑓(𝑡𝑗, 𝜃𝐺𝐿𝑆)∣2. (28)

Therefore we approximate in the asymptotic theory by

𝜃𝐺𝐿𝑆 ∼ 𝒩𝑝(𝜃0,Σ
𝑛
0 ) ≈ 𝒩𝑝(𝜃𝐺𝐿𝑆 , Σ̂

𝑛
𝐺𝐿𝑆). (29)

We can also calculate the standard errors for 𝜃𝐺𝐿𝑆 by taking the square roots of the
diagonal elements of the covariance matrix Σ̂𝑛

𝐺𝐿𝑆.

6.2 Inverse problem results

We present results of estimating 𝜃 = (𝛽) and 𝜃 = (𝑚,𝛽) using the model (1). We
demonstrate the numerical and statistical capabilities of our model and associated inverse
problem algorithms with simulated “data” in Section 8.

As we mentioned before, the VRE surveillance data does not report the number
of patients in isolation during weekends and holidays. Not surprising, when trying to
fit the model (1) to the data, we found that there were in many periods additional
observations missing that did not correspond to weekends and holidays. However, we
identified a period of about three months (January 17, 2006 to April 13, 2006) that only
had weekends as missing values and used these to carry out the inverse problems. Since
our model is continuous through weekends, in order to carry out the fitting we omitted
any weekend observations from the cost functional.

Residuals (see [9] for a discussion of the use of residual plots in post inverse problem
analysis) and the best fit-to-data as a result of estimating 𝜃 = (𝛽) are depicted in Figure
3 and Figure 4. Results from estimating 𝜃 = (𝑚,𝛽) are given in Figure 5 and Figure
6. Overall, from the residual analysis we can conclude that whether we use OLS or
GLS, the errors are independent (residuals vs time are random). On the other hand, the
residuals versus model plot for OLS compared to the residuals/model versus model for
GLS have the same pattern indicating no difference in whether we use an absolute error
model or a relative error model. Given the wide variability in the VRE data, we are led
to suspect that the apparent discrepancy in the statistical model may be due to model
error rather than measurement error.
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(d) GLS: Residual/Model vs Model

Figure 3: Residual analysis for the OLS and GLS optimization with model (1) as a result
of estimating 𝜃 = (𝛽) using oncology unit surveillance data.
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Figure 4: Best fit model solutions (model (1)) to oncology unit surveillance data via
OLS optimization, 𝛽 = 0.0039. At each jump, data is fit using the model value after
isolation.
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(d) GLS: Residual/Model vs Model

Figure 5: Residual analysis for the OLS and GLS optimization as a result of estimating
𝜃 = (𝑚,𝛽) using oncology unit surveillance data.
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Figure 6: Best fit model solutions (model (1)) to oncology unit surveillance data via
OLS optimization, (𝑚̂, 𝛽) = (0.1332, 0.008). At each jump, data is fit using the model
value after isolation.
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7 Model refinement

The inverse problem results from the previous section using the model (1) suggests that
the model fit does not agree particularly well with the underlying process. Therefore, we
refined the model, allowing more realistic details in the model, and compared it again
to the data to investigate if there were possible improvements in the model fit.

Details that we included in the model are based on a faithful description of hospital
routine for patients that are VRE colonized on admission. The epidemiology laboratory
is closed on weekends and this results in two consequences. First, pending test-results
from patients admitted on a Thursday or a Friday will be back by Monday or Tuesday.
Second, swab-tests taken on patients admitted on a Saturday and a Sunday will be
sent to the epidemiology laboratory on Monday, then these patients will be isolated by
Wednesday. For simplicity, we focused on the first detail to see if accurate rendering of
these details in the model provides any improvement in the model fit.

We assume that for patients that are admitted on Thursdays and Fridays, the test-
results are back on Tuesdays. These patients will be moved into isolation by Tuesday
night. As a result, we also have a jump discontinuity every Tuesday. If we let 𝑡𝑗 be a
Tuesday and 𝑡𝑗+1 be the next Tuesday then

𝐶1(𝑡
+
𝑗+1) = 𝐶1(𝑡

−
𝑗+1)−𝐶1(𝑡𝑗+1 − 4)𝑒−4𝜇2 (30)

represents the number of patients in 𝐶1 after isolation on Tuesday. This is basically the
number of patients in compartment 𝐶1 before isolation minus the number of patients
that were isolated at time 𝑡𝑗+1. Hence, 𝐶1(𝑡𝑗+1 − 4) represents the number of patients
in 𝐶1 on a Friday (this includes the ones that where admitted on a Thursday and have
not been discharged by Friday) and 𝑒−4𝜇2 is the fraction of those 𝐶1(𝑡𝑗+1− 4) that were
not discharged over a period of 4 days before isolation (this follows the same derivation
as in (5.4)). Consequently, this jump discontinuity in 𝐶1 influences a positive jump in
𝐽 defined as

𝐽(𝑡+𝑗+1) = 𝐽(𝑡−𝑗+1) + 𝐶1(𝑡𝑗+1 − 4)𝑒−4𝜇2 , (31)

where 𝐽(𝑡+𝑗+1) represent the total number of patients in isolation after that the isolation
on Tuesday takes place. The dynamics for compartment 𝐶1 at time 𝑡 are modeled by

𝑑𝐶1(𝑡)

𝑑𝑡
= 𝑚{𝜇1𝑁 + (𝜇2 − 𝜇1)[𝐶1(𝑡) +𝐶2(𝑡) + 𝐽(𝑡)]}
− 𝑚𝑒−2𝜇2{𝜇1𝑁 + (𝜇2 − 𝜇1)[𝐶1(𝑡− 2) + 𝐶2(𝑡− 2) + 𝐽(𝑡− 2)]}
− 𝜇2𝐶1(𝑡) for 𝑡𝑗 < 𝑡 < 𝑡𝑆𝑎𝑡, (32)

𝑑𝐶1(𝑡)

𝑑𝑡
= 𝑚{𝜇1𝑁 + (𝜇2 − 𝜇1)[𝐶1(𝑡) +𝐶2(𝑡) + 𝐽(𝑡)]}
− 𝜇2𝐶1(𝑡) for 𝑡𝐹 < 𝑡 ≤ 𝑡𝑗+1, (33)

with 𝑡𝐹 as day Friday and 𝑡𝑆𝑎𝑡 as day Saturday. Equation (32) models the rate of
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change of 𝐶1’s from Wednesday through Friday in which isolation takes place by the
corresponding rate. On the other hand, Equation (33) models the rate of change of 𝐶1’s
from Saturday through Tuesday in which isolation is not employed. Tuesday is included
on the interval because it corresponds to the number of 𝐶1’s on Tuesday before isolation
takes place. Finally, the complete model that includes the new detail is given by

𝑑𝐶1(𝑡)

𝑑𝑡
= 𝑚{𝜇1𝑁 + (𝜇2 − 𝜇1)[𝐶1(𝑡) + 𝐶2(𝑡) + 𝐽(𝑡)]}
− 𝑚𝑒−2𝜇2{𝜇1𝑁 + (𝜇2 − 𝜇1)[𝐶1(𝑡− 2) + 𝐶2(𝑡− 2) + 𝐽(𝑡− 2)]}
− 𝜇2𝐶1(𝑡) for 𝑡𝑗 < 𝑡 < 𝑡𝑆𝑎𝑡,

𝑑𝐶1(𝑡)

𝑑𝑡
= 𝑚{𝜇1𝑁 + (𝜇2 − 𝜇1)[𝐶1(𝑡) + 𝐶2(𝑡) + 𝐽(𝑡)]}
− 𝜇2𝐶1(𝑡) for 𝑡𝐹 < 𝑡 ≤ 𝑡𝑗+1,

𝐶1(𝑡
+
𝑗+1) = 𝐶1(𝑡

−
𝑗+1)− 𝐶1(𝑡𝑗+1 − 4)𝑒−4𝜇2 ,

𝑑𝐶2(𝑡)

𝑑𝑡
= 𝛽{𝑁 − [𝐶1(𝑡) + 𝐶2(𝑡) + 𝐽(𝑡)]}[𝐶1(𝑡) + 𝐶2(𝑡) + (1− 𝛾)𝐽(𝑡)]
− 𝜇2𝐶2(𝑡), for 𝑡𝑖 < 𝑡 ≤ 𝑡𝑖+1,

𝐶2(𝑡
+
𝑖+1) = 𝐶2(𝑡

−
𝑖+1)−𝐶2(𝑡𝑖+1 − 2)𝑒−2𝜇2 ,

𝑑𝐽(𝑡)

𝑑𝑡
= 𝑚𝑒−2𝜇2{𝜇1𝑁 + (𝜇2 − 𝜇1)[𝐶1(𝑡− 2) + 𝐶2(𝑡− 2) + 𝐽(𝑡− 2)]}
− 𝜇2𝐽(𝑡), for 𝑡𝑗+1 < 𝑡 < 𝑡𝑆𝑎𝑡,

𝑑𝐽(𝑡)

𝑑𝑡
= −𝜇2𝐽(𝑡), for 𝑡𝐹 < 𝑡 < 𝑡𝑗+1,

𝐽(𝑡+𝑗+1) = 𝐽(𝑡−𝑗+1) + 𝐶1(𝑡𝑗+1 − 4)𝑒−4𝜇2 ,

𝐽(𝑡+𝑖+1) = 𝐽(𝑡−𝑖+1) + 𝐶2(𝑡𝑖+1 − 2)𝑒−2𝜇2 . (34)

with 𝑡𝐹 as day Friday, 𝑡𝑆𝑎𝑡 as day Saturday, 𝑡𝑗 as isolation-day on Tuesday, 𝑡𝑖 as isolation-
day on Thursday. Initial conditions are: 𝐶1(0) = 𝐶01, 𝐶2(0) = 𝐶02, 𝐽(0) = 𝐽0, and a
trajectory of the solution in the past: 𝐶1(𝜃) = Γ(𝜃), 𝐶2(𝜃) = Ψ(𝜃), 𝐽(𝜃) = Ω(𝜃) for
𝜃 ∈ [−2, 0).

7.1 Inverse problem results

In this section we present the results of estimating 𝜃 = (𝛽) using the refined model (34)
with the surveillance data. We also verify the numerical accuracy of the computations
for the refined model. Section 8 contains details on numerical validation as well as model
comparison details.

Figure 7 depicts the residual analysis and Figure 8 depicts the best fit to data for
model (34) . The results indicate that there is not significant improvement in the model
fit to the data. That is, the additional detail in the model corresponding to jumps on
Tuesdays does not have a significant effect in the fit to the data.
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Figure 7: Refined model: Residual analysis for the OLS and GLS optimization with
model (34) as a result of estimating 𝜃 = (𝛽) using oncology unit surveillance data.
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Figure 8: Refined model: Best fit model solutions to oncology unit surveillance data via
OLS optimization with model (34), 𝛽 = 0.0039. Note jumps every 5 days corresponding
to every Tuesdays and jumps every 7 days corresponding to Thursdays. At each jump,
data is fit using the model value after isolation.
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8 Models comparison and algorithm analysis

We next report on comparison of model (1) with model (34) as well as validate the
numerical accuracy of these models when carrying out an inverse problem.

In order to compare both models, we simulated a solution with the parameters values
recorded in Table 4. Figure 9 contains a plot of the forward solutions of the models in
comparison to the data. The plots indicate that relative to the data the dynamics of
model (1) in comparison to model (34) are essentially the same. In the first 14 days
we see a little difference but after that there is no qualitative difference except for the
Tuesdays’ jump in model (34). We can conclude that with the addition in model (34)
of more details to model (1) there appears to be no significant improvement over model
(1) fits to the surveillance data.

In order to test the computational efficacy of use of the models in inverse problem
calculations, we added noise (constant variance error) to the forward solution and carried
out an inverse problem using the noise-added solution as synthetic data to attempt to
recover the original parameters. In other words, realizations of synthetic data {𝑦𝑗} for
𝑗 = 1, ..., 𝑛, are constructed by adding variability to the model solution, 𝑓(𝑡𝑗, 𝜃0) =
𝐽(𝑡𝑗 , 𝜃0). The statistical model that captures the variability is

𝑌𝑗 = 𝑓(𝑡𝑗, 𝜃0) + 𝜎𝑍𝑗 (35)

where 𝑍𝑗 is a standard normal variable (i.e., 𝑍𝑗 ∼ 𝒩 (0, 1)) and 𝜎2 is the constant
variance. The magnitude of 𝜎 determines the amount of noise added.

We conducted the inverse problems to estimate 𝜃 = (𝛽) and 𝜃 = (𝑚,𝛽) via ordinary
least squares (OLS) with different noise levels: 𝜎 = 0, 0.10, 0.30, 0.50 and 0.70. In
Tables 5 and 6 we summarize the results for the estimation of 𝜃 = (𝛽) and 𝜃 = (𝑚,𝛽)
corresponding to model (1) and model (34). Fitting results are presented in Figures 10
and 11 for model (1), and Figures 12 and 13 for model (34). We can conclude that the
estimation procedure performed adequately with each model when using noisy synthetic
data.
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Table 4: Parameters values used in the forward type problem to compare models

Initial Conditions Units Oncology Unit Values
(N=37)

𝑥(0) Individuals [2;4;11]
𝑥0 Individuals [4,2;5,3;9,10]

Parameters

Λ Individuals/day 0.16𝑈(t) + 0.08(𝐶(t) + 𝐽(t))
𝑚 Dimensionless 0.4
𝛽 1/day 0.0039
𝛾 Dimensionless 0.58
𝛼 1/day 0.29
𝜇1 1/day 0.16
𝜇2 1/day 0.08

Table 5: OLS optimization testing using Model (1) for parameter subsets 𝜃 = (𝛽) and
𝜃 = (𝑚,𝛽). The model was fit to generated data with 𝜎 = 0, 0.1, 0.3, 0.5, 0.7.

𝜎 0 0.1 0.3 0.5 0.7

𝑚 - - - - -

𝛽 0.0039 0.0039 0.0040 0.0041 0.0041

𝑚 0.04 0.0392 0.0386 0.0364 0.0334

𝛽 0.0039 0.0040 0.0040 0.0042 0.0043

Table 6: OLS optimization testing using Model (34) for parameter subsets 𝜃 = (𝛽) and
𝜃 = (𝑚,𝛽). The model was fit to generate data with 𝜎 = 0, 0.1, 0.3, 0.5, 0.7.

𝜎 0 0.1 0.3 0.5 0.7

𝑚 - - - - -

𝛽 0.0039 0.0039 0.0040 0.0040 0.0041

𝑚 0.04 0.0404 0.0407 0.0424 0.0449

𝛽 0.0039 0.0039 0.0040 0.0040 0.0040
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(a) Model (1) solution using forward type problem in comparison to the
data. Note jumps every 7 days corresponding to Thursdays. Both values
at the jump are plotted.
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(b) Model (34) solution using forward type problem in comparison to the
data. Note jumps every 5 days corresponding to Tuesdays and jumps
every 7 days corresponding to Thursdays. Both values at the jumps are
plotted.

Figure 9: Solutions of the models using forward type problem in comparison to the
oncology unit surveillance data.
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(a) Level of noise: 𝜎=0.10
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(b) Level of noise: 𝜎=0.30
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(c) Level of noise: 𝜎=0.50
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(d) Level of noise: 𝜎=0.70

Figure 10: Model (1) fit to the synthetic data using OLS optimization procedure to
estimate 𝜃 = (𝛽).
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(a) Level of noise: 𝜎=0.10
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(b) Level of noise: 𝜎=0.30
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(c) Level of noise: 𝜎=0.50
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(d) Level of noise: 𝜎=0.70

Figure 11: Model (1) fit to the synthetic data using OLS optimization procedure to
estimate 𝜃 = (𝑚,𝛽).
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(a) Level of noise: 𝜎=0.10
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(b) Level of noise: 𝜎=0.30
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(c) Level of noise: 𝜎=0.50
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(d) Level of noise: 𝜎=0.70

Figure 12: Model (34) fit to the synthetic data using OLS optimization procedure to
estimate 𝜃 = (𝛽).
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(a) Level of noise: 𝜎=0.10
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(b) Level of noise: 𝜎=0.30
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(c) Level of noise: 𝜎=0.50
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(d) Level of noise: 𝜎=0.70

Figure 13: Model (34) fit to the synthetic data using OLS optimization procedure to
estimate 𝜃 = (𝑚,𝛽)
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9 Conclusions

We have introduced a discrete event VRE model with delay that incorporates specific
details with respect to the isolation procedure employed to patients in a hospital unit. We
attempted to estimate some of the epidemiological parameters such as the transmission
rate (𝛽) and the fraction (𝑚) of patients VRE colonized on admission. Results suggested
that there was little success in the model fits to the data, especially when trying to
estimate 𝜃 = (𝑚,𝛽). We followed with a model refinement that includes additional
detail to investigate whether an improvement in the model fits to the data could be
achieved. Results revealed no improvement in the model fit to the data. To ensure that
our inverse problem calculations were not the source of difficulty, we used simulated data
(produced by the model with added noise) to validate our methodology and our ability
to successfully estimate parameters in the model. Thus we demonstrated that if we have
quality data for which the model is a reasonable approximation, we can successfully
carry out the inverse problem, even with very noisy data.

We conclude that the VRE surveillance data appears to be very irregular as it does
not seem to follow any standard process and contains an extemely high level of variability.
One reason that the data has little to do with the process could be due to the fact that
there is not a true parameter 𝜃0 in the statistical model, 𝑌𝑗 = 𝑓(𝑡𝑗, 𝜃0) + ℰ𝑗 , that
can generate the data we have from this hospital unit. The assumption of existence
of such a 𝜃0 is an essential foundation of much of the statistical and mathematical
methodology for inverse problems (see [9]). Another possible reason could be that it
is likely that the underlying assumption for statistical model should be modified to
𝑌𝑗 = 𝑓(𝑡𝑗, 𝜃0) + 𝑔(𝑡𝑗 , 𝜃0)ℰ𝑗 , where we do not know 𝑔(𝑡𝑗 , 𝜃). Another (more likely we
believe) possibility is that there is no underlying model 𝑓(𝑡𝑗, 𝜃0) that describes this
data. In other words, this data is completely irregular due to inherent irregularities
under data reporting. Thus we suspect that the quality of the data is not sufficient
for model development. It is therefore, in the terminology introduced earlier, a prime
example of “cold data” which is not adequate for model development and validation.

The models developed here involve a data collection process as described to us by
the health workers. Thus we suggest that there are irregularities in reporting or in
their descriptions of what they actually do. This claim is supported in Section 3.5
where we described inconsistencies in the data reporting. Any future efforts on model
development would require a much more careful design and implementation of the data
collection process.
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